Documentation
Search…
Exporting the release file to different formats

Exporting the release file to different formats

You can export the release file to different formats with the Python SDK. Use the export_datasetutil function for this, setting the export_format parameter to one of the following:
Value
Description
coco-instance
COCO instance segmentation format
coco-panoptic
COCO panoptic segmentation format
yolo
Yolo Darknet object detection format
instance
Grayscale PNGs (16-bit) where the values correspond to instance ids
semantic
Grayscale PNGs (8-bit) where the values correspond to category ids
instance-color
Colored PNGs where the colors correspond to different instances
semantic-color
Colored PNGs where the colors correspond to different categories, with colors as configured in the label editor settings when available
Example:
# pip install segments-ai
from segments import SegmentsClient, SegmentsDataset
from segments.utils import export_dataset
# Initialize a SegmentsDataset from the release file
client = SegmentsClient('YOUR_API_KEY')
release = client.get_release('jane/flowers', 'v1.0') # Alternatively: release = 'flowers-v1.0.json'
dataset = SegmentsDataset(release, labelset='ground-truth', filter_by=['labeled', 'reviewed'])
# Export to COCO panoptic format
export_dataset(dataset, export_format='coco-panoptic')
Alternatively, you can use the initialized SegmentsDataset to loop through the samples and labels, and visualize or process them in any way you please:
import matplotlib.pyplot as plt
from segments.utils import get_semantic_bitmap
for sample in dataset:
# Print the sample name and list of labeled objects
print(sample['name'])
print(sample['annotations'])
# Show the image
plt.imshow(sample['image'])
plt.show()
# Show the instance segmentation label
plt.imshow(sample['segmentation_bitmap'])
plt.show()
# Show the semantic segmentation label
semantic_bitmap = get_semantic_bitmap(sample['segmentation_bitmap'], sample['annotations'])
plt.imshow(semantic_bitmap)
plt.show()
Copy link